Welcome to

Statnett's R&D Conference 2019

Smart Grid Session

Introduction to Smart Grid	Jørn Egil Johnsen	Statnett
How can big data help us with smarter asset management?	Arne Smisethjell	Statnett
Can PMU data help with system operation?	Anders Holten Skånlund	Statnett
IMPALA – Imbalance Predictions with Machine Learning – a Key to Automation	Eivind Lindeberg	Statnett
Is large scale demand side response a myth or can it be reality?	Knut Styve Hornnes	Statnett
Drones, just fun fact or an asset management tool?	Thomas Negård, Rolf Broch	Statnett

Smart Grid Program

Introduction

Jørn Egil Johnsen, program manager @Ullevål Business Center, 03.04.2019

Next generation power system - SAFE, SMART & DIVERSED

The future is electric

Source: IEA – ETP 2014 (IEA scenario 2050)

ICT plays an important role in the (next generation) power system

Statnett

The state of the power system can be measured in real-time Unlimited capacity for storing and processing data

All components have sensors for monitoring and control

> Unlimited transmission capacity

The future is electric

Increased complexity requires realtime decisions

Real time

- Measurement and control
- System operation and asset management

Statnett

New operator environment

Machine learning and Big data

- Real-time analysis and decision models
- New Architectures (Fog, cloud +++)
- New skills (data scientists)

Automatization

- Robots and control engines
- Artificial Intelligence (AI)
- Control systems for automation

Framework for the Smart Grid program

- How to handle increased complexity
- Good knowledge and complete control is required.
 - The power systems condition in real-time.
 - Automatic solutions
 - Control systems that optimize operation.

The future is electric

Digitized asset management

Integrated platforms

Real-time analysis

How do we achieve better insight and control

Statnett

The future is electric

Thank you for your attention

 Contact: jorn.johnsen@statnett.no

SAMBA How can big data help us with smarter asset management?

Presentation Statnett R&D Conference 3rd. April 2019, Meet Ullevaal, Oslo Arne Smisethjell, Project Manager SAMBA

+011.76

Statnett

132Sk1AE

What is the SAMBA project?

The SAMBA project has been a <u>3 year R&D project</u> financially supported by the Norwegian Research Councils Energix program and completed in March 2019.

With funding from The Research Council of Norway

• The partners in this project have been:

The challenges for Asset Management in Statnett

- Aging and increased volume of assets
- Statnett must optimize maintenance and investments
- Statnett has a lot of data about its components, but can utilize these in a better way

Some key figures from the SAMBA project:

The future is electric

Why SAMBA project?

- Predict now condition for critical components
- Predict the development **over time** for critical components
- The basis for predictive maintenance
- Optimize the right time for critical component replacement
- Simplify and automated decision processes

Åpen informasjon / Public information Asset condition transformer

Innovations

	Statnett use case identification	.	Circuit breaker failure model		Risk monitoring function	Ø	Voltage transformer failure prediction
8	Multivariate analysis of transformer gasses		Overview of historical data availability	~~	Cable and transformer temperature prediction	•	Asset reinvestment analysis testing
	Reactor breaker reignition identification	}	Health index transformers	Q	Line connector condition assessments	-	ICT asset management architecture investigation

Innovation

 Cable temperature prediction

- Tested on Statnett data
- Possible to predict
 temperature in cable
- Goal: Used in operation and detection of abnormal conditions

Recommendations

Improve data quality and availability

- Data <u>V</u>olume
- Data <u>V</u>elocity
- Data <u>V</u>ariation
- Data <u>V</u>eracity

Statnett What is the benefit of the SAMBA project?

Statnett has achieved:

- An ICT architecture suitable for asset management
- Demonstrate the need for sensors, measurements and data quality
- Expertise for condition monitoring models for power components
- Basis for development of Asset Health

Potential savings for Statnett

- Saving ~ 30 40% by going from preventative to predictive maintenance
- Annual savings by postpone the replacement of a transformer is approx. NOK ~ 0.5 million

Tank you for your attention!

Can PMU data help with system operation?

Presentation Statnett R&D Conference 3rd. April 2019, Meet Ullevaal, Oslo Anders Skånlund, Project Manager SPANDEx and NEWEPS

Statnett

System operation will have to change...

Smarter homes

- Hourly meters
- Flexible demand
- Battery/storage
- Own generation

Smarter communities / cities

Share resources

RETAIL

- Local generation
- Exploit local opportunities in storage, heating, cooling, geothermal, transport etc.

Smarter markets & grids

- Overall system optimization
- Integrate across borders
- Integrate distribution and transmission

WHOLESALE

New generation mix

- Volatile renewables replace
 plannable thermal
- Digital solutions improve forecasts and optimization

... because the system change

Statnett

Challenges and opportunities

 More renewable generation
 More demand response
 More electrification
 Fast technological development
 More integration across borders, grid levels and energy carriers

> Challenges and Opportunities for the Nordic Power System

What is a Phasor Measurement Unit (PMU)? Statnett

A device that makes it possible to monitor frequency, current, voltage and phasors

Some parameters are measured directly and others are calculated

A PMU can be a separate instrument or integrated into other instruments

When we say "PMU" we often mean "PMU-data" and not a physical box **Digital transformation in 4 dimentions**

- → New knowledge of the state of the grid
- → Solve traditional challenges smarter
- → May lead to new ways of operating the grid significant possibilities for innovation and creativity

Being able to identifying frequency oscillations

10 seconds of frequency oscillations - current SCADA system would show one arbitrary value

Being able to see a bigger picture

10 seconds of frequency variations - current SCADA system is neither showing nor connecting the dots

Getting new information about disturbances

About 10 seconds of disturbances not seen in current SCADA system

PMUs to facilitate a digital transformation

Digital Transformation

- Novel use of digital technology to solve traditional problems.
- Enable new types of innovation and creativity, rather than simply enhance and support traditional methods

Statnett

Statnett

A wide range of use cases, eg.

Monitoring and visualization

- Detect fast changes in voltage, current, phase angles and power flow
- Detect power oscillations and their origin and cause
- Calculate voltage stability limits
- Monitor system imbalances and the use of system services
- Improve state estimators
- Islanding management

Analysis of incidents

- What happened?
- Causes and effects
- Generation and system modeling and validation

Protection and control

- System protection
- Coordinated Voltage control
- Measures to stop oscillations (wide area power oscillation dampers)

...more opportunities to be developed

Business Case for the use of PMU-data

Wide Area Monitoring, Protection and Control System (WAMPACS)

WAMS

Synchronized data provide more **insight** into system dynamic ... WAPS

... and can improve automatic response measures like system protection ...

WACS

...control/regulation based on a complete set of synchronized measured and calculated state estimates

SPANDEx: Platform for operators to see grid dynamics

SPANDEx: Application used to illustrate dampening effect

P		e-terraphasorp	oint Workbench	 Islanding - pdc_kjet 	tilu on e-terrapha	sorpoint		- 0
Overview P & Q Islanding	voltage Frequenc System Disturbance	Live Data Voltage Condition		Frequency Condition Historical Data Events Admin		Angle Condition Historisk frekvens og eksport		Oscillatory Stability Live Frekvens og eksport
Regions	•	H	SINTEF/NT		TS		a C X	
	Events 24-Feb-2019 22:14:57_1 24-Feb-2019 22:14:46_2 24-Feb-2019 22:14:45_3 24-Feb-2019 22:14:45_3 24-Feb-2019 22:14:43_5 24-Feb-2019 22:14:43_6 24-Feb-2019 22:14:42_7 24-Feb-2019 18:15:08_8 24-Feb-2019 18:15:08_9	38 37 36 35 34		20kV Varangerbotn-lv	valo		7.192 Damping (%) 6.865 New 0	' 🗹 220 kV 💽 300 kV 💽 (
-1,0 Upper/Lower Frequency	24-Feb-2019 18:15:07_10 24-Feb-2019 18:15:07_10 24-Feb-2019 18:15:06_11 24-Feb-2019 18:14:27_12 24-Feb-2019 18:14:27_12 24-Feb-2019 18:14:26_14 24-Feb-2019 18:14:24_15 24-Feb-2019 18:14:23_16 24-Feb-2019 17:16:00_17 24-Feb-2019 17:16:22_19	33 32 31 14:44 Event file	14:46 14:4	8 14:50	14:52 14:54	4 14:56	0.8815 New 0 switching Prony order 10 Change	
2 49,9 2 49,8 10	24-Feb-2019 17:06:18_20 24-Feb-2019 17:03:36 21	♥ Config. file	userSetting.mat		reau ille	Close	10 -	10 20

Statnett

Some findings...

- Include operators from idea to implementation and use
- Implementing new information system like WAMS is an iterative process
- Initially, researchers/developers and operators have different understandings of needs, possibilities and benefits and best solutions are developed during discussion and training
- Need to implement applications into the SCADA-system in order to get real experience

Going Nordic! The NORDGRID initiative

Nordic challenges

A Nordic platform for R&D

- A cooperation between Nordic Energy Research and the Nordic TSOs
- Nordic ministers allocating 500 MNOK to joint Nordic R&D (incl. energy)

Nordic Energy Research

Nordic Council of Minist

NEWEPS – a Nordic opportunity

ENERGINET

FINGRID

- Improve the ability to monitor and control the power system in real-time
- Automatic response to dynamic changes in an integrated and renewable Nordic power system.

SVENSKA

iea International Energy Agency

LANDSNET

Statnett

Statnett

Thank you for your attention

IMPALA

Imbalance predictions with Machine Learning

– a key to automation

Eivind Lindeberg

Statnett R&D Conference. Ullevål, April 3 2019

Outline

- Balancing the power system and why it's getting harder
- Predicting imbalances with machine learning
- Prediction a key to automation

Balancing is a Statnett task

Hourly market balance vs. momentary system balance

Wind and sun - no schedule

Consumption changes are unplanned

Optimeering Statnett Taking actions for the unknown

Manual reserves are activated to solve the **imbalance** in 10-60 minutes

The challenge is growing

Optimeering **Statnett**

Fremtiden er elektrisk

Patterns!

Last updated.: 14:29:25

Date and time of predictions:

Impala

Optimeering **Statnett**

Nordic balancing model: Automated balancing

Market development requires mFRR per biddig zone, per 15 minutes.

 $5 \text{ BZ} \bullet 4\text{Q} \bullet 24\text{h} = 480 \text{ mFRR-loops per day}$

"Just-in-time research"

Road ahead

Strategic development "In-housing"

Commercial software

Challenges and success factors

- Relevance!
 - We solve a problem that needs to be solved
- Data!
 - The good we had complete data set of imbalances
 - The bad real-time data has been a proper challenge.
- Partners!
 - Competent and resourceful partners with self-interest in project success

Further reading

 https://www.groundai.com/project/forecasting-intra-hourimbalances-in-electric-power-systems/

Large Scale Demand Response – myth or reality?

Oslo 2. April 2019 Knut Hornnes Statnett

Main goals

- Motivate development and cooperation between TSO, technology suppliers, BRP and electric energy end user.
- Test and validate a technical concept for demand control. The concept shall be scalable and progressive.

Specific goals in the project

- Test a full scale technical solution which is able to disconnect a number of loads from Regional Control Centre North in Alta.
- Test and validate a technical concept for demand control. The concept shall be scalable and enable progressive development.
- Test disconnection of loads with a response time of 2 minutes.
- Obtain participation of loads with different characteristics.

The future is electric

Number of disturbances in 33-420 kV grid

The future is electric

Increasing need for flexibility in the Nordic power system

Area in focus – Northern Norway

- The Demand Response project wanted to include loads in a large area, the counties of Nordland, Troms and Finnmark
- The solution must be scalable and enable progressive development

System solutions

- Two possible infrastructures for communication
 - AM(S) with two-way communication and control
 - IP addressable via fiber, GSM, GPRS (IoT)
- Depending on future roles
 - Grid companies
 - Aggregators
 - Balance responsible parties
 - Power retailers

Demand response concept

R&D partners

- eSmart as
 - Contract counterpart
 - Technical solution
 - Function as aggregator
 - E2U as supplier of control hardware

- Ishavskraft as BRP
 - Elekctrical boilers in Tromsø and Alta
 - A number of residential houses with electric radiators
- Statkraft as BRP for Alcoa
 - Industrial load

Statnett

Participation in Demand response pilot

- It takes a lot of time end effort to get access to loads that can be disconnected
- The pilot got access to a total of 21,4 MW of demand
 - Tromsø: 6,5 MW electrical boilers
 - Alta: 2,9 MW electrical boilers
 - 12 MW industrial load
 - Some residential houses with electric radiators
- Activation from Regional Control Centre North via aggregator

Fleksible loads in Tromsø and Alta

kW

El-kjel	993
El-kjel	204
El-kjel	200
El-kjel	210
El-kjel	197
El-kjel	226
El-kjel	274
El-kjel	106
El-kjel	146
El-kjel	3970
	El-kjel El-kjel El-kjel El-kjel El-kjel El-kjel El-kjel El-kjel El-kjel

		kW
Finnmark	El-kjel	537
Finnmark	El-kjel	800
Finnmark	El-kjel	170
Finnmark	El-kjel	189
Finnmark	El-kjel	122
Finnmark	El-kjel	245
Finnmark	El-kjel	245
Finnmark	El-kjel	138
Finnmark	El-kjel	125
Finnmark	El-kjel	174
Finnmark	El-kjel	218

- Response time less than 2 minutes
- Duration of activation 30, 60, 120 and 240 minutes

• Åpen informasjon / Public information

API Regional Control Centre North

Statnett Storskala Laststyring

Welcome : ADMIN@ROLE_ADMIN Logout

Statnett

Refresh	Refresh													
disconnectL	Market Participant Id	GridNodeld	GridNodeName	EnergyGroupId 먨	Load	Disco	Categor	RespTim	Duration	Disconnected	Availabl	DisconnectStartTime	DisconnectEndTime	reconnectLi
Disconnect	Ishavskraft	null	60min 5min	f9aee92b-6e51-5d3d-a88e-95cd2d16de8a	15	0	в	2	60	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Hungeren	Hungeren 7min 5min	fD4b1915-27c9-5314-aa86-8c105f59f2c1	87	0		2	7	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	null	5min 5min	es2b75d4-6712-55cd-bb1b-6f001f7fc60c	752	0		2	5	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Hungeren	Hungeren 15min 5min	e6ccbf88-166f-5328-bfb1-8e73369f345c	166	0		2	15	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Hungeren	Hungeren 30min 5min	e522a961-a9bd-5dc7-8afD-8984b880cce6	134	0	A	2	30	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	null	30min 5min	e46e7b2d-d035-506b-b8a5-222a827a226e	30	0	A	2	30	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Mestervik	Mestervik 9min 5min	d19117d9-d944-51cb-a92f-50eb3e10016c	1666	0		2	9	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Aronnes	Aronnes 15min 5min	d0b4f059-11cb-5244-a31f-ed1cb22a9887	106	0		2	15	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Hungeren	Hungeren 6min 5min	96cd5ced-b628-5629-9514-161b3c91f1a5	47	0		2	6	No	Yes	N/A	N/A	Reconnect
				95843120-c8b7-5da3-b5d2-680d29d8ede7	10000	0		2	5	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Aronnes	Aronnes 60min 7min	89538a43-b6dc-56de-a406-6ce28a56dd1e	95	0	в	2	60	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Charlottenlund	Charlottenlund 30mi	83e300da-4ec1-5475-80d2-f19b6573d6c0	406	0	A	2	30	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Aronnes	Aronnes 30min 5min	6e9b079a-7aa7-5b4c-be96-b453786c2fd7	42	0	A	2	30	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Aronnes	Aronnes 5min 5min	61f81fe8-75bf-5865-923d-ad8c5492b6ec	752	0		2	5	No	Yes	N/A	N/A	Reconnect
				4ffcd638-846a-52d7-9d5d-6859b140ff40	2000	0		2	6	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Aronnes	Aronnes 60min 5min	3cab2c72-9f3f-5b5b-a329-0d659d2188f2	126	0	в	2	60	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Mestervik	Mestervik 15min 5min	35234dc4-238e-5b35-8566-0cf780b19396	26	0		2	15	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Aronnes	Aronnes Omin Omin	33dcc59b-3932-5765-9e3d-9dce2c701d38	127	0		2	0	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Hungeren	Hungeren 8min 5min	3145e8e0-c478-5bae-804c-77672cc5fb66	159	0		2	8	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Mestervik	Mestervik 30min 5min	1029cea2-881d-554e-ba40-9ee1f0c632bc	143	0	A	2	30	No	Yes	N/A	N/A	Reconnect
Disconnect	Ishavskraft	Test	Test 5min 5min	0648ca3d-f5aa-531b-bebc-329dc205365b	154	0		2	5	No	Yes	N/A	N/A	Reconnect

The future is electric

Demand response concept

Conclusions

- It takes time and a lot of effort to get access to loads that can be disconnected
- Several different consumption categories are well suited for disconnection with low consequences
- The technology for communication and control is available
- The roles of the actors must be understood and further developed
- Standards for communication and control should be developed
- Markets suitable for demand response resources should be developed
- It's already here!

Report Large Scale Demand Response

- Report from Thema after interviews with actors involved in the project
- Public report (in Norwegian)
- Report available at statnett.no

Offentlig ISBN 978-82-8368-031-7

På oppdrag fra Statnett november, 2018

THEMA Rapport 2018-16

• Åpen informasjon / Public information

Åpen informasjon / Public information

Automatic inspection by drone

Åpen informasjon / Public information

Automatic mission for inspection

Statnett

Fremtiden er elektrisk

Automatic inspection by drone

Mobile sensor

- Gauge-reading
- Mechanical deviations
- EO-camera
- IR-camera
- UV-camera

Unmanned stations

- Distance
- Criticality
- Physical layout
- Support regional centrals

Prediktive maintenance

- Sensordata
- Verify condition or state

3 main components

Localization and navigation

Nordic weather

- Sense & avoid
- Turnaround
- Sensor(s)

- Machanism
- Interaction w/drone

- Functionality
- Multiple drones
- Operator friendly
Automatic inspection by drone

Åpen informasjon / Public information

Statnett

Onboard equipment:

- 8 motors
- 2 GPS-antennas
- 2 computers
- 1 lidar-scanner
- 3 depthsensors, EO and IR
- double flightcontrollers
- 24-105mm zoomcamera
- radiometric IR camera
- ++

Sintef HV-lab

Hangardesign

Navigation and route planning

Location, date

Controll system

Mapping of Aura in 3D.....with a drone

Location, date

Discoveries so far

- Size of drone is important
- Operational in GNSS-denied areas
- Sense & avoid is a safety measure
- Connecting with BIM/3D gives us advantages
- Lessons learned, that we can put into Lineinspection

AI - 4 - UAS

The future is electric

Project goal(s)

 Develop a solution which will, using artificial intelligence, detect faults based on information from sensors.

Collect images

Åpen informasjon / Public information

Statnett

Tag & Classify

Tag & Classify

insulator_string	22 077
cotter_pin	21 059
ins_bottom_link_assembly	18 861
ins_top_link_assembly	15 617
shield_wire_pylon_top_assembly	9 721
chain_shackle	5 393
weight	5 245
damper	2 665
pylon_number	2 081

Train model

Train model

Synthetic data

The future is electric

Deploy

• Field Inspector

Deploy

- Field Inspector
- Mobile Ground Station

Statnett

Upload

Statnett

Deploy

- Field Inspector
- Mobile Ground Station
- IA client

The road ahead

- More images to train the model and enable the AI to identify more components and defects
- Generation of reports after fault verification
- Live view from the drones to the operations center

